Challenges in development, assembly and testing of Lidar Sensors
Our Mission (1/3): *We develop and implement optical systems beyond the limits of standard solutions.*

- We combine camera, illumination and evaluation algorithm specific for your application
- We offer knowledge of a wide range of optical measurement technology

CIS – cuevette inspection system

3D geometry verification
Our Mission (2/3): We offer a comprehensive system knowledge, short project launch times and a high degree of innovation.

- Physical understanding and analysis of your application
- Creative solutions resulting from our interdisciplinary experience

Improving windshield inspection with simple shaping optics

defence laser for LIDAR testing systems
Our Mission (3/3): We offer complete solutions from a single source.

- Design, development and prototyping of various optical systems
- Testing and characterisation based on ISO standards
- Turn-key systems with CE conformity
- Coordination and project management for complete system or inspection module

Distortion measurement for AR-glasses

Inspection optics for LIDAR sensors
Ensuring the *reliability* is challenging

High quality LIDAR

<table>
<thead>
<tr>
<th>Sensor design</th>
<th>receiving inspection</th>
<th>Sensor assembly</th>
<th>End of line test</th>
</tr>
</thead>
</table>

- **Sensor design**: susceptibility to manufacturing tolerances
- Quality of each *single component* counts
- Precise alignment required during *sensor assembly*
- **End of line test** critical to meet strict requirements
Optic design

Lidar Receiver

- Development and challenges depending on the concept (Flash vs. Scanning)
- Receiver
 - Horizontal field of view up to 150°
 - Cross-talk with light path of sender
 - Fast optical systems F/# < 1,0
- General challenges:
 - Costs of components
 - Limited space
 - Automotive temperature range -40°...+95°C
 - Lots of vibrations
 - Quality standards (→ Quality control)

Source: H. Gross, Handbook of optical systems
Component inspection

Example: Rotating mirror

Part: Rotation mirror

- **Critical specifications**
 - Parallelism of the two mirrors
 - Angle of the mirrors to the reference surface

- **Requirements for system**
 - Angular measurement with accuracy < 0.001°

Mirror test system by DIOPTIC
Component inspection
Example: Protection window

Component: Protection window

- Challenges
 - Form errors cause angular errors of the lidar
 - Testing to angular range of 360°

- Solutions
 - 3D-imaging (shape measurement)
 - Wavefront sensor

Setup measurement of angle deflection

Horizontal deflection (mrad)
Alignment and assembly

- **Tight Tolerances: sender**
 - Emission angle of the Lasers
 - Divergence of the laser
 - Decentralization, focal length of lenses
 - Angle and position tolerances

- **Tight Tolerances: receiver**
 - Aberrations
 - Location, angle of image sensor
 - Location APDs
 - Orientation rotation mirror

- **Concatenation of tolerances often requires monitored or active alignment**

Diagram:
- **Passive assembly**
 - Pick and Place
- **Monitored Adjustment**
 - Support by camera or angle measuring system
- **Active adjustment**
 - Laser / sensor is active
Alignment and assembly
Emitter assembly

Challenges
- Multiple optical components must be aligned

Tasks
- Conception
- Measurement of
 - Position and angle of optical components
 - Emission angle of Laser
 - Focus position of Laser
 - Reference points
- Positioning and alignment
- Fixation by UV adhesive
Alignment and assembly

Reciever assembly

Issue
- Cheap lenses typically have a tilted image plane due to tolerance
- 6 degrees of freedom

System
- Detection of reference markers for angular alignment
- Alignment of the sensor behind lens to correct tilting of the image plane

Benefit DIOPTIC
- Benefit from our knowledge in lens design and building high end inspection systems
Inspection systems

Alignment of send and receive path

Challenges

- Synchronization
- Lighting of APDs
- Aperture of the lens must be very large

![Lidar with Laser and APDs](image1)

Huge aperture objective design by DIOPTIC
Inspection systems

Conoscopy

Conoscopy

- greek: konos = cone, skopeo = to inspect
 → Inspection of angle fields

Challenges / Special features

- The entrance pupil is in front of the lens (all light emitted needs to be collected)
- Large aperture
- Calibration of distortion (“Object in infinity” → Use of DOEs)

Huge aperture objective design by DIOPTIC:
150 mm diameter
365 mm length
9 lenses
Inspection systems

Eye safety

- According to DIN EN 60825-1, the permissible irradiance and duration on the retina is specified.

- Irradiance depends on:
 - Laser power
 - Pulse pattern
 - Beam parameters (divergence, diameter, focus position, beam quality)
 - Scanning speed
 - Accommodation of the eye
 - Pupil size (according to standard 7 mm)

> *Inspection system must cover large number of configurations*
Our services for lidar systems

Development
- Consulting
- Optic design
- Prototyping

Assembly systems
- Conception
- Monitored alignment
- Active alignment

Inspection systems
- Component inspection
- End-of-line systems
CONTACT
LIDAR TEST AND ASSEMBLY SYSTEMS

Niklas Andermahr
Optical Inspection Systems
+49 6201 65040-13
andermahr@dioptic.de

Benjamin Kühnreich
Optical Inspection Systems
+49 6201 65040-18
kuehnreich@dioptic.de

DIOPTIC GmbH
Bergstraße 92 A
69469 Weinheim, Germany
Phone: +49 6201 65040-00
Fax: +49 6201 65040-01
Office@dioptic.de
www.dioptic.de